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Strategies are needed for assessing the risks of exposures to airborne toxicants that vary over
concentrations and durations. The goal of this project was to describe the relationship between the
concentration and duration of exposure to inhaled trichloroethylene (TCE), a representative volatile
organic chemical, tissue dose as predicted by a physiologically based pharmacokinetic model, and
neurotoxicity. Three measures of neurotoxicity were studied: hearing loss, signal detection
behavior, and visual function. The null hypothesis was that exposure scenarios having an equivalent
product of concentration and duration would produce equal toxic effects, according to the classic
linear form of Haber's Rule (C x t = k), where C represents the concentration, t, the time (duration)
of exposure, and k, a constant toxic effect. All experiments used adult male, Long-Evans rats. Acute
and repeated exposure to TCE increased hearing thresholds, and acute exposure to TCE impaired
signal detection behavior and visual function. Examination of all three measures of neurotoxicity
showed that if Haber's Rule were used to predict outcomes across exposure durations, the risk
would be overestimated when extrapolating from shorter to longer duration exposures, and
underestimated when extrapolating from longer to shorter duration exposures. For the acute
effects of TCE on behavior and visual function, the estimated concentration of TCE in blood at the
time of testing correlated well with outcomes, whereas cumulative exposure, measured as the area
under the blood TCE concentration curve, did not. We conclude that models incorporating
dosimetry can account for differing exposure scenarios and will therefore improve risk assessments
over models considering only parameters of external exposure. Key words: behavior, Haber's Rule,
hearing, physiologically based pharmacokinetic model, trichloroethylene, vision.
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Risk assessment frequently requires judgment
regarding the influence of exposure concen-
tration and duration in producing adverse
health effects. Risk assessment decisions often
involve estimating safe exposure concentra-
tions for exposure durations that were not
tested experimentally. For example, the for-
mulas used in risk assessment to calculate a
reference dose (RfD) or reference concentra-
tion (RfC) contain uncertainty factors to
adjust risk estimates based on data from
experiments with less-than-lifetime exposures
(1). In addition, exposure levels may also be
adjusted to account for differences in expo-
sure duration (2). For example, a no-
observable adverse effects level (NOAEL)
from a 6 hr/day, 5 days/week inhalation
study might be adjusted by factors of 6/24
and 5/7 in an attempt to match the effect of
the experimental exposure conditions to those
of a relevant environmental exposure (i.e., 24
hr/day, 7 days/week). In addition, the Clean
Air Act (3) requires that the U.S.
Environmental Protection Agency (U.S.
EPA) establish health-based exposure stan-
dards governing acute, as well as chronic,
exposures; this process entails determining
risks associated with exposures over a range of
possible durations.

The temporal profiles of actual exposure
may vary greatly over time, with relatively

high peaks interspersed among extended
periods of lower concentrations. Exposure
concentrations that vary over time are often
modeled as time-weighted averages. The
adjustment of exposure concentration (C) by
exposure duration (t) and the calculation of
time-weighted averages relies on the assump-
tion, formulated in Haber's Rule (Cx t= k),
that the product of exposure concentration
and duration produces a constant toxic effect
(k). This assumption, however, has a poor
scientific basis and limited predictive success
(4). As an alternative, Andersen et al. (5)
advocated adjusting exposure limits over
changing exposure durations using physiolog-
ical pharmacokinetic models and suggested
that knowledge about the actions of individ-
ual compounds was important in selecting
appropriate dosimetry parameters. More
recently, characterizing exposure-dose-
response relationships has been emphasized
(6) as a framework to understand the many
factors influencing the relationships between
exposure scenario, absorbed dose, target tissue
dose, and adverse outcomes.

Volatile organic compounds (VOCs)
represent a major fraction of the high-volume
compounds released into the atmosphere, and
neurotoxicity is a concern following acute
exposure to VOCs. For example, 19 of the 25
chemicals with the highest volume of release

into the atmosphere are reported neuro-
toxicants, and 18 of those are VOCs (7).
Trichloroethylene (TCE) was selected as a
representative VOC for study because its vol-
ume of use, release, and potential exposure is
relatively high, and there is extensive pharma-
cokinetic and neurotoxicity information
available (8,9).

The current project represents a co-
ordinated study of neurotoxicity and pharma-
cokinetics as a function of exposure to TCE
over different exposure scenarios, with the
ultimate goal of understanding exposure-
dose-response relationships. Three specific
aims are presented. a) The first aim was to
determine exposure-effect relationships (i.e.,
what are the relationships between atmos-
pheric TCE concentration, exposure dura-
tion, and neurotoxicity?). To address this,
exposure concentration-time relationships
were determined for the effects of inhaled
TCE on three neurotoxicological outcome
measures including hearing loss, signal detec-
tion behavior, and visual function. Haber's
Rule was proposed as a null hypothesis
against which empirically obtained Cx t rela-
tionships were compared. A nonconstant
toxic effect was specified as the alternative
hypothesis. b) The second aim was to estab-
lish dosimetric relationships (i.e., how does
the concentration of TCE in the blood and
brain vary as a function of the exposure?). To
accomplish this a physiologically based phar-
macokinetic (PBPK) model was developed
specifically for inhaled TCE in Long-Evans
rats. c) The third aim was to determine the

This article is part of the monograph on Trichloroethylene
Toxicity.

Address correspondence to W.K. Boyes, Neuro-
toxicology Division, MD-74B, U.S. EPA, 86 T.W.
Alexander Dr., Research Triangle Park, NC 27711.
Telephone: (919) 541-7538. Fax: (919) 541-4849.
E-mail: boyes.william@epa.gov

This manuscript has been reviewed by the National
Health and Environmental Effects Research
Laboratory, U.S. Environmental Protection Agency, and
approved for publication. Mention of trade names and
commercial products does not constitute endorse-
ment or recommendation for use. Technical contribu-
tions of the following individuals are acknowledged: M.
Bercegeay, V. Griffin, B. Padnos, W. Oshiro, T.
McDonald, Y.M. Sey, X. Zhao, P. Evansky, T. Krantz,
and J. McGee. Helpful comments on an earlier version
of the manuscript were provided by V.A. Benignus and
C.S. Scott.

Received 20 October 1999; accepted 7 January
2000.

Environmental Health Perspectives * Vol 108, Supplement 2 * May 2000 317



BOYES ET AL.

relationships between tissue concentrations of
TCE and functional effects on the nervous
system. This aim was accomplished by using
the PBPK model to predict tissue TCE con-
centrations under different exposure scenarios
and then comparing the neurotoxic outcomes
to estimated tissue dose. This article is orga-
nized into three general sections, one for each
specific aim. Subsections, where appropriate,
cover each individual neurotoxicity outcome
investigated. We present only an overview of
the results of this research project. The pri-
mary reports of the data have been or will be
published elsewhere as indicated below.

The Relationships between
the Atmospheric TCE
Concentration, Exposure
Duration, and Neurotoxicity
Efecs ofTCE halatinon
on Hearing Loss
The ototoxicity of a number ofVOCs, indud-
ing TCE, has been observed as a permanent
mid-frequency hearing loss in animals and
humans (10-14). Extrapolation of ototoxic
risk based on this research has been hampered
by the short-duration high-concentration
exposures used to demonstrate these effects.
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Figure 1. A comparison of the theoretical C x t= k
curve (assuming cumulative effects; open symbols) ver-
sus the empirically derived dB15 (filled symbols) for dif-
ferent exposure durations. The dB15 is the concentration
at which a 1 5-dB hearing loss occurs. Vertical error bars
represent the upper and lower 95% confidence intervals
for the dB15. The toxicity of TCE is less than that pre-
dicted by a strict cumulative effects model. The 8-hr
threshold limit value (TLV) and the estimated peak at
'fence line" concentration (highest concentration esti-
mated to occur directly downwind from manufacturing
facilities during a spill) are shown as horizontal lines.
Dotted lines represent C x t relationships starting from
the 1-week and 4-week exposure effect concentrations.
Reproduced from Crofton and Zhao (16).

Thus, we evaluated the adequacy ofshort-term
exposure to high concentrations of TCE for
predicting the neurotoxicity produced by
exposures to lower concentrations for longer
durations. Adult male Long-Evans rats (n =
10-12 per group) were exposed to air or TCE
via inhalation for 6 hr/day for four durations:
1 day (4,000-10,000 ppm); 5 days/week for 1
week (1,000-4,000 ppm); 4 weeks
(800-3,200 ppm); or 13 weeks (800-3,200
ppm). These concentrations were based on
the initial observation of hearing loss at 2,000
ppm following a 5-day exposure (13).
Auditory thresholds were determined for a 16-
kHz tone 3-5 weeks after each exposure,
using reflex modification audiometry (13,15).
This assessment period was chosen due to pre-
vious work demonstrating maximum and per-
manent hearing loss within 3-5 weeks after
exposure. Results were modeled using
NOAELs, LOAELs (lowest observable adverse
effects level), and a polynomial regression that
estimated the exposure concentration resulting
in a 15-dB sound pressure level increase in the
hearing threshold (dBI5) compared to the
control group. A 15-dB elevation of threshold
is generally regarded as a clinically significant,
adverse effect in humans.

Results replicated previous findings of
mid-frequency hearing loss for all exposure
durations (13,15). The lowest effective con-
centrations (LOAELs) for 16-kHz thresh-
olds were 6,000, 3,200, 3,200, and 2,400
ppm for the 1-day, and 1- ,4-, and 13-week
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exposures, respectively (Figure 1). The dB15
concentrations were 6,218, 2,992, 2,592,
and 2,160 ppm TCE for the 1-day, 1-, 4-,
and 13-week exposures, respectively. The
dBI5 data were fit to a polynomial equation
that indicated an extrapolated asymptotic
effect of approximately 2,100 ppm for a
2-year exposure (16).

These data suggest that solvent-induced
ototoxicity depends almost entirely on con-
centration at exposure durations lasting sev-
eral weeks and that the ototoxicity ofTCE at
these durations was less than that predicted
from shorter durations by a strict C x t rela-
tionship. In other words, use of Haber's Rule
to extrapolate from short to long exposure
durations underestimated the concentration
of TCE necessary to cause hearing loss and
thus overestimated the risk of hearing loss
associated with exposure to TCE. The fact
that hearing loss was not related to the con-
centration-duration product is probably not
caused by the induction ofTCE metabolism,
since the concentrations involved are well
above the level of metabolic saturation.
Furthermore, these data demonstrate that the
ototoxicity ofTCE appears to be restricted to
high concentration exposures (i.e., > 2,000
ppm). Because these exposure concentrations
greatly exceed most occupational, atmos-
pheric, and residential exposures (8), typical
ambient air concentrations ofTCE appear to
pose a very low risk of ototoxicity to the
general population.
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Figure 2. (A) SI as a function of TCE concentration in air (individual lines) and C x t product (abscissa). The three
points on each line represent the SI values for the three 0.33-hr (20-min) periods of testing within each 1-hr session.
Values are means (± SEM) across rats. Points with matching superscripts at 800 and 1,600 ppm-hr differ from each
other (a = 0.05). The fact that these points differ indicates that the effect of TCE on signal detection behavior cannot
be predicted by the Cx tproduct. Reproduced from Bushnell (21). (B) Sensitivity as a function of arterial TCE concen-
tration (TCEA), as estimated by the PBPK model described in the text. Here the data points for each time period during
the test session are connected across exposure concentrations. All points and curves are essentially equivalent, indi-
cating that signal detection behavior can be predicted accurately by TCEA.
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Effects ofTCE Inhalation on Signal
Detection Behavior
Concentration-time relationships were
examined for the effects of inhaled TCE in
rats on performance of a signal detection task
in which rats responded to brief, temporally
unpredictable visual stimuli that occurred in a
fixed location. Accuracy of performance of
the task was then used to test the main
hypotheses of the project. Adult male Long-
Evans rats (n = 11) were trained to perform
the signal detection task (17) prior to expo-
sure. TCE vapor was drawn into the operant
chambers in concentrations of 0, 400, 800,
1,200, 1,600, 2,000, or 2,400 ppm. Exposure
durations of 0.33, 0.67, and 1.00 hr were
obtained at each TCE vapor concentration,
yielding a matrix of C x t products.
Probabilities of correct and incorrect
responses were converted by the theory of sig-
nal detection (18,19) to a sensitivity index
(SI), which reflects the animal's accuracy in
discriminating signals from nonsignal events.

Inhalation of TCE reduced SI; this effect
increased with increasing values of both Cand
t, but the effect depended more upon C than
upon t (Figure 2A). Concentration-effect
functions for SI were then generated for each
of the three exposure durations used.
Criterion concentrations, analogous to bench-
mark concentrations (20) with continuous
data, were computed from each animal's con-
centration-effect function using an effect level
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of a 0.1-unit decrease in SI (10% of full scale).
The mean criterion concentration decreased
with increasing duration of exposure, confirm-
ing the influence of t in determining the mag-
nitude of the effect. However, the decrease in
criterion concentration as exposure duration
increased was less than that predicted by
Haber's Rule (Figure 3A) (21). Thus, when
extrapolating from longer to shorter durations
of exposure, the assumption that Cx t is con-
stant overestimated the concentration ofTCE
necessary to produce the criterion effect and
thus underestimated risk of that exposure.

Effects ofTCE Inhalation on
V'isual-Evoked Potentials
Concentration-duration relationships for
inhaled TCE on pattern-elicited visual-
evoked potentials (VEPs) were examined to
explore the relationship between inhaled
TCE and the functional integrity of the visual
system. Evoked potentials (22) were recorded
from the visual cortex of awake, restrained
male Long-Evans rats during inhalation expo-
sure. A pilot study was used to determine an
appropriate range of concentration-time
combinations to use for testing the null
hypothesis, and a value of 4,000 ppm-hr was
selected as producing a clear but not maximal
change. In a full experiment, C x t products
of 0 ppm-hr (0 ppm x 4 hr) or 4,000 ppm-hr
were created including 1,000 ppm x 4 hr;
2,000 ppm x 2 hr; 3,000 ppm x 1.3 hr; and

Tissue Dose

0.33 0.67 1.00

Time (hr)
Figure 3. D, dose (blood TCE concentration). (A) Criterion exposure concentrations of TCE in air (see text) calculated
for signal detection behavior (as sensitivity) at each exposure duration, plotted on log-log coordinates as a function
of the duration of exposure. The criterion concentrations (points connected by heavy line) increased as exposure time
was shortened. The value at 0.33 hr differed significantly from the value at 1.00 hr (p < 0.05). Thus, the assumption
that time does not influence toxicity (dashed horizontal line) is not supported by the data. However, the criterion con-
centration did not increase as fast as would be predicted by Haber's Rule-depicted here as the function with a con-
stant C x t product (light solid line(-which assumes that C and t affect toxicity equally. Reproduced from Bushnell
(21). (B) Criterion exposure concentrations of TCE in blood (see text) calculated as in A. Criterion concentrations did
not change significantly with decreasing duration of exposure, indicating that time (i.e., the duration for which the tis-
sue concentration is maintained) has little or no effect on signal detection behavior.

4,000 ppm x 1 hr (n = 9-10/condition). If
Haber's Rule were a good predictor of out-
come, then each group exposed to TCE
would show an equivalent effect of treatment.

The results showed that VEP amplitude
decreased progressively with increasing con-
centrations of TCE (Figure 4). All groups
treated with TCE were significantly differ-
ent from the air control group, and the
groups treated with 1,000 ppm x 4 hr and
2,000 ppm x 2 hr were each significantly
different from the group treated with 4,000
ppm x 1 hr. That is, amplitude was reduced
as a function of C but not of t or the C x t
product (23). Thus, as was found for hear-
ing loss and signal detection behavior, the
prediction of a constant toxic effect for
exposure conditions with a constant C x t
product was not confirmed.

Summary ofExposure-Effect
Relationships for TCE
The empirical observations of changes in hear-
ing, signal detection behavior, and visual func-
tion show that Haber's Rule does not hold
when extrapolating these neurotoxicological
outcomes over exposure duration (Figures 1,
2A, 3A, 4). When exposure-effect relation-
ships were generated to determine exposure
concentrations producing constant neurotoxi-
cological effects as a result of changing expo-
sure durations, the effective concentrations fell
on a line having a shallower slope than that
given by Haber's Rule (Figures 1, 3A).
Combining these effects schematically (Figure
5) illustrates this relationship: the line repre-
senting Haber's Rule is steeper than the lines
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Figure 4. The amplitude of the frequency double compo-
nent (F2) of pattern-elicited visual evoked potentials as a
function of inhalation exposure concentration, duration,
and the C x t product. Exposure was to 1,000 ppm for 4
hr, 2,000 ppm for 2 hr, 3,000 ppm for 1.3 hr, or 4,000
ppm for 1 hr, yielding a constant C x t product of 4,000
ppm-hr for each exposure condition. A statistically sig-
nificant reduction in F2 amplitude was produced by each
exposure condition. The amount of F2 amplitude reduc-
tion was related to exposure concentration, but not to
duration or to the C x t product. Haber's Law (C x t= k)
did not hold. The asterisks designate values that are sta-
tistically different from control with a probability of *p <
0.05; **p< 0.01; ***p< 0.001.
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Figure 5. Relationship of functionally neurotoxic concentrations of TCE to changes in the concentration and duration
of exposure to inhaled TCE. In both panels, Haber's Rule (C x t = k) forms a straight line with negative slope when
plotted on log-log coordinates. (A) Criterion concentrations of TCE (filled symbols) were calculated from observed
effects of short-term (< 1 hr) acute inhalation of TCE on signal detection behavior. These concentrations fall on a line
with shallower slope than the line describing Haber's Rule. (8) Benchmark concentrations of TCE (filled symbols)
were calculated from observed effects of long-term (6 hr-30 days) repeated inhalation of TCE on hearing loss. These
concentrations also indicate a shallower slope than that predicted by Haber's Rule. The shallower slope indicates
that as exposure duration decreases, the concentration of TCE necessary to cause a criterion effect rises. Similarly,
as exposure duration increases, the concentration of TCE necessary to cause a criterion effect falls. However, these
changes do not occur as fast as predicted by Haber's Rule. Thus, in the short term, Haber's Rule overestimates expo-
sure necessary to cause a criterion effect and underestimates the risk of such exposures. In the long term, Haber's
Rule underestimates the exposure necessary to cause a criterion effect and overestimates the risk of such exposures.

representing empirically determined indices of
neurotoxicity. Assuming that data are avail-
able from an exposure at time to (center point
of Figure 5), extrapolation toward longer
times using Haber's Rule underestimates con-
centrations of inhaled TCE associated with
hearing loss. Similarly, extrapolation toward
shorter times using Haber's Rule overesti-
mates concentrations of inhaled TCE associ-
ated with changes in sensitivity in signal
detection behavior.

How Does the Concentration
of TCE in Blood and Brain Vary
as a Function of the Exposure?
Pharmacokinetic Model forTCE
in Long-Evans Rats
Several PBPK models for TCE are available
in the peer-reviewed literature, including
models for male F344 rats (24), male
Sprague-Dawley rats (25), pregnant F344
rats (26), lactating F344 rats and nursing
pups (27), enterohepatic recirculation of
TCE metabolites (28), B6C3F1 mice (29),
and humans (30). PBPK models play a
prominent role in the U.S. EPA current
reassessment of TCE (6,31). Recognizing
that various PBPK models for TCE are avail-
able, this project developed a PBPK model
for TCE in Long-Evans rats for the following
reasons: There may be significant strain dif-
ferences in the pharmacokinetics of TCE
(32), and the neurotoxicity data were

collected in Long-Evans rats. Also, none of
the existing models account for possible
changes in either the distribution or metabo-
lism of TCE that might occur in active,
weight-maintained animals, as were used here
in the behavioral studies. Further, none of the
previously published models include the
brain as a defined compartment. The final
model is designed to account for the effects, if
any, of physical activity and weight mainte-
nance, and to incorporate the brain as a
separate, specified compartment.

The initial PBPK model was based on the
model structure of Ramsey and Andersen
(33), with model inputs either experimentally
derived or taken from the literature. Partition
coefficients for brain, blood, liver, fat, and
muscle were determined in adult male Long-
Evans rats fed ad libitum, using the vial equi-
libration method. Tissue/air partition
coefficients were calculated using equations
derived from Gargas et al. (34) and Sato and
Nakajima (35), and tissue/blood partition
coefficients were calculated as the ratio of tis-
sue/air to tissue/blood. Marked differences
were not observed between the partition co-
efficients measured in male Long-Evans rats
and those measured previously in male F344
rats (24). Tissue volumes for brain, liver and
fat were measured in both ad libitum and
weight-maintained rats (36) so that PBPK
models could be constructed for the rats used
in the VEP experiments (ad libitum food) as
well as those used in the behavioral

experiments (restricted food). Blood flow data
were those of Delp et al. (37), collected in
awake, nonrestrained Sprague-Dawley rats.
A series of uptake curves was generated

for TCE in a closed vapor uptake chamber, as
has been described for carbon tetrachloride
(38,39). Animals were exposed individually
so that individual animal variation could be
assessed. A PBPK model was used to estimate
metabolic constants from the vapor uptake
data. Metabolism was assumed to occur only
in the liver compartment and was character-
ized by a single saturable process described by
Vmax (maximum metabolic rate) and Km
(Michaelis constant). The metabolic con-
stants were estimated numerically by opti-
mization with Simusolv (Dow Chemical Co.,
Midland, MI, Version 3.0, 1993).

The PBPK model was used to simulate
arterial concentrations ofTCE (TCEA) at the
time of VEP assessment or during measure-
ment of signal detection behavior. TCEA was
chosen as the dose metric because of its close
relationship to target organ (brain) concentra-
tion and because of the ready accessibility of
blood from experimental animals. The model
predicted tissue concentrations of the parent
compound TCE but did not predict tissue
levels of metabolites because the expense of
analysis of metabolite concentrations made
confirmation of model predictions unattain-
able. TCEA was expressed as either area under
the curve (AUC) or momentary arterial con-
centration (i.e., arterial concentration at the
time of neurotoxicity assessment). These two
indicators of internal dose were then
compared to the neurotoxicological outcomes.

The Relationships between
Tissue Concentrations of TCE
and Functional Effects on the
Nervous System
Signal Detection Behavior
Values of TCEA were estimated by the pre-
liminary PBPK model for each of the C x t
products tested, both as the average TCEA
and the AUC for the duration of the 20-min
time periods (AUC20) during which the
behavior was assessed. The magnitude of
behavioral change was predicted well by esti-
mated TCEA and by AUC20. That is, the sen-
sitivity of signal detection decreased with
relative uniformity as TCEA increased (Figure
2B), regardless of the exposure conditions
associated with the TCEA. In contrast, when
the same data were plotted against the C x t
product of exposure (Figure 2A), clear differ-
ences in effect of TCE at a given Cx t prod-
uct were evident. These results indicate that
estimates of internal dose of TCE predicted
functional effects better than did the parame-
ters of external exposure. Furthermore,
criterion concentrations calculated for
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internal dose of TCE, as TCEA, did not
change significantly across exposure durations
(Figure 3B). This observation suggests that
the effect of TCE on signal detection behav-
ior can be described in terms of TCEA alone,
and that the duration for which this concen-
tration is maintained does not alter the mag-
nitude of the effect.

Vilsual Functon
The preliminary PBPK model was used to
simulate TCEA under the exposure condi-
tions previously described for electrophysio-
logical tests. Area under the TCEA curve,
expressed as the total exposure from the onset
to the time of testing at the end of exposure,
correlated poorly with VEP amplitude, indi-
cating that the cumulative amount of TCE
inhaled was not a critical determinant ofVEP
changes (Figure 6). In contrast, momentary
TCEA at the time of VEP recording cor-
related well with deficits in VEP amplitude.

Summary ofInternal DoseEffect
Relationships for TCE
We observed good correlations between the
predicted levels of internal dose and measures
of signal detection behavior and visual func-
tion. Similar correlations have been observed
for avoidance behavior in rats inhaling TCE
(40) and after inhalation of toluene (41). In
addition, a meta-analysis of the effects of
inhaled toluene in rats and humans showed
that changes in behavior were systematically
related to concentrations of toluene in the
blood (42). The measures of internal dose in
the present studies included the arterial con-
centration at the time of testing and the AUC.
The latter measure of dose was defined differ-
ently for the two outcome measures; for signal
detection behavior, AUC was calculated over
each 20-min segment of time during which
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Figure 6. Evoked potential F2 amplitude for the
exposure conditions described in Figure 4, replotted as
a function of blood TCE concentration predicted from
the PBPK model. The left panel shows F2 relative to
TCEA expressed as the AUC from the onset of exposure
to the time of assessment. The data indicate that AUC
was a poor correlate of effect. The right panel shows
F2 amplitude as a function of peak TCEA at the moment
of assessment. Peak TCEA correlated well with F2
amplitude reduction.

the behavioral data were collected (AUC20)
but excluded exposure prior to that time.
AUC20 defined in this manner correlated well
with behavioral deficits because the behavior
was measured throughout this exposure
period. For VEP studies, in which VEP assess-
ment took about 1 min, AUC was calculated
from the onset of exposure until the comple-
tion of testing. In this case, AUC correlated
poorly with outcome. For both signal detec-
tion behavior and visual function studies,
however, TCEA at the time of testing corre-
lated well with the magnitude of functional
changes observed. It is expected that the con-
centration of TCE in brain, when measured,
will differ from TCEA in proportion to the
blood/brain partition coefficient and other
factors such as the rate of blood flow to the
brain. The data to date indicate that TCEA at
the time of testing predicts changes in neuro-
logical function and suggest that the momen-
tary concentration of TCE in the brain may
be a critical factor in determining the acute
neurotoxic effects ofTCE.

It is also of interest to consider whether
these effects can be attributed to the parent
compound, TCE, or to potentially neuro-
active metabolites. The PBPK model indi-
cated that metabolism of TCE was saturated
at atmospheric concentrations of TCE above
approximately 200 ppm. The fact that there
were dear dose-response relationships at con-
centrations above metabolic saturation, as for
example in Figures 2 and 4, suggests that the
effects observed were caused by TCE itself and
not by any metabolites. These results, how-
ever, do not definitely rule out some contribu-
tion ofTCE metabolites. The contribution of
metabolites at the exposure concentrations
used here could be assessed by conducting the
neurotoxicological experiments under condi-
tions where TCE metabolism is inhibited,
assuming that the metabolic inhibitor of
choice has no detectable effect on the neuro-
logical outcome measure. Alternatively, exper-
iments similar to those described here for
TCE could be conducted with various TCE
metabolites, such as chloral hydrate or
trichloroethanol, to examine the relationship
between various measures of metabolite inter-
nal dose and neurological effect.

Research Needs
Further research is needed to characterize the
linkage between the pharmacokinetic behav-
ior of the test compound and acute neuro-
toxic outcomes, and to examine the
generality of these conclusions both with
regard to other VOC compounds and with
regard to human subjects.

The initial PBPK model will be enhanced
to include a brain compartment and assessed
through comparison of the model predictions
with experimental determinations of tissue

TCE concentrations. The PBPK model can
then be modified, if necessary, to improve its
ability to predict tissue concentrations under
the exposure conditions used in the neuro-
toxicology experiments.

The effects of the prototypic solvent TCE
may generalize to those of other solvents,
either within the same chemical class (halo-
genated aliphatic compounds) and/or to
other classes (e.g., alkylated benzenes). Future
experiments assessing Cx t relationships asso-
ciated with exposure to other VOCs are being
considered. The degree of generality of these
findings will provide guidance for risk assess-
ment strategies regarding the possible mecha-
nisms of action of VOCs in the central
nervous system.

It is also important to assess the generality
of these findings in rats to exposure scenarios
involving humans. In future studies it should
be possible to use equivalent behavioral and
electrophysiological procedures in rats and
volunteer humans subjects exposed to a com-
mon VOC. With appropriate scaling and
validation, the PBPK models may predict
blood concentrations in both humans and
rats. Such direct comparisons may prove
valuable for comparing effects of a variety of
exposure scenarios in humans and experi-
mental animals (42).
Conclusions
The research accomplished to date demon-
strates that the linear form of Haber's Rule
misrepresents the actual risks of exposure
when health effects are extrapolated across
different exposure concentrations and dura-
tions. Consistent conclusions were reached
for three measures of neurotoxicity and
demonstrate that a) when extrapolating from
shorter to longer exposure durations, Haber's
Rule overestimates exposure risks, and b)
when extrapolating from longer to shorter
exposure durations, Haber's Rule under-
estimates exposure risks.

Other formulations of Haber's Rule
involving power functions of time and/or
concentration have achieved better fits to
experimental data than Haber's original func-
tion (4,21), but these models are still based
upon a "black box" approach to the influence
of changing exposure scenarios on tissue
dosimetry and how those changes influence
health outcome (43). When dosimetry is
considered, adjustments across exposure
scenarios gain a biological foundation.

Ideally, the assessment of risk from a toxic
chemical utilizes knowledge of the relation-
ship of exposure to a metric of internal target
tissue dose, in addition to demonstrated
adverse effects produced in a target organ.
Understanding the relationships among
exposure concentrations and durations, tissue
dosimetry, and adverse outcomes will reduce
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uncertainties in dose-rate extrapolation, and
thus improve risk assessments. In our experi-
ments, when the PBPK model was used to
predict blood concentrations achieved under
different exposure scenarios, the estimated
peak blood concentration at the time of test-
ing accurately predicted the magnitude of
effect on visual function and signal detection.
The results to date suggest that the acute
changes in neural function occurring during
exposure are a function of the momentary tis-
sue concentration of the parent compound
TCE, although more definitive experiments
regarding the influence of metabolism are
desirable. Andersen et al. (5) argue that peak
blood levels are not generally the most appro-
priate index of exposure; however, they also
point out that the effects of agents interacting
reversibly with specific receptors are usually
related to peak blood concentration. The
acute neuroactive effects of TCE appear to
fall in this category.

Regarding assessment of the risk of neuro-
toxicity from acute exposure to TCE, our
results suggest that an appropriate way to
extrapolate across exposure concentrations
and durations is to determine the tissue con-
centration produced by exposure at the time
of the critical functional assessment, and to
use a PBPK model to estimate other exposure
conditions yielding the same critical tissue
concentrations. The acute effects of organic
solvents on the nervous system share many
similarities (44,45) but also show unique
properties as well (46). Further research will
indicate the extent to which these conclusions
based on acute exposure to TCE will generalize
to the assessment of risk for other VOCs.
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